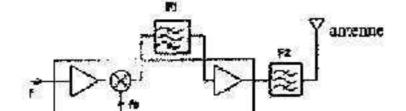


Le 29 avril 2010

Module A 15

Les fonctions non-linéaires dans les systèmes de communication

Durce 2h; documents autorisés; calculatrices autorisées.


om :				Promotion	1	
555	er ook water is at viscoor over a promotestice	Λ	•	91.8790.000% <u>A1990.</u>		5527
Enom ;		Corre cho	s r l			
ercice 1	SLAR -	William S	(3 - 2):			
it l'étoge a	mplificateur de pui	ccance enjount /	m'on utilisera	à la fréquenc	e de 28GHa	
ir i cuige i	infi(memen) en jan	Condition and Fitting	la on ompsere	a ia ricquenc	7	5
	<u> 2 - 3 - 30 - 30 - 30 - 30 - 30 - 30 - 3</u>				1	
		\$160 BY 100 BY 1	ower Out Vs. P	41110.000.001044 - 101 <u>4</u>	1	5,5240 - 6
	10.4	Vd=5V ldc	=1500mA T=2	5°C		
	34 -	£		a redi	3-3-A	
	32 -		-36	wording warmen " Date	(44)	
	30		A plant of the second	100000	X	
	29 -		and the same		757 356270	
Pout (dBm)	26 -	and the second	700 10		. 8	
	24 -	a surviva		27 GHz	16	
Ĭ	22			20742 (1220)	88 akraij	
~			<i>/</i> -	28 GHz	3	
	18		/ . <u></u>	29 GHz	1000 to 100 to	
	16 -			NE.		
	14 -			→ 30 GHz	S (5)	
	12 7		· · · · · · · · · · · · · · · · · · ·	(A og trop Modeler		
	10 2 4		10 10	14 10	10 00	
	μ Z 4	13 4	′ 10 12 Pin (dBm)	14 16	18 20	
	3		in terms			

-> Ps-23 dism

G=19 dB

T)		iBm et en mW)
Pands = 3	1 dom	
iins Vaanaan maanaan maanaan maanaan m	# 1,25 Natts	***************************************
3) On vent utiliser cet a	impli pour une application nécessitant t	me très bonne linéarité et
justifier?	optimale. Quelle valeur de puissance	de solde choismes vo
Regul	der 6 dB. (B.	ule off)
⇒ 7dfm en		m ey sorlie
	(automis)	
***************************************	1 1000	
4) Pour une toute autre	application, la puissance d'entrée est c	lo 6dBm, sachant que l'a
est altmenté par une t en puissance ajoulée.	tension de 5V et sous un courant de 80	tma, calculer son render
		At f
и В-	Pe 316,22 m/ - 3	317
PAE D.C	5 x 800	400
	M	14801
	tee to come a district	d'intermodulation IMR3
 Le point d'Interception le cas ou la puissance 	e d'entrée est de 6dBm.	
le cas ou la puissance	d'entrée est de 6dBm.	
le cas ou la puissance	d'entrée est de 6dBm.	Powt)
le cas ou la puissance	d'entrée est de 6dBm.	Pout) (.6+.19).}
le cas ou la puissance		Powt) (6+19))
le cas ou la puissance	d'entrée est de 6dBm. In 123 = 2 (IP3 = 2 (40	
le cas ou la puissance Par Calcul.	d'entrée est de 6dBm. In 123 = 2 (IP3 = 2 (40	
le cas ou la puissance Par Calcul, Grafile	d'entrée est de 6dBm.	
le cas ou la puissance Par Calcul. Graphia e 2 2000	10 entrée est de 6dBm. In 12 = 2 (I23 2 (40 2 dB	1mpicis)
le cas ou la puissance Par Calcul. Equipme 2 2000 téléphone GSM, le signa	d'entrée est de 6dBm. In 123 = 2 (IP3 = 2 (40	on à transmettre (porteuse

Vrai

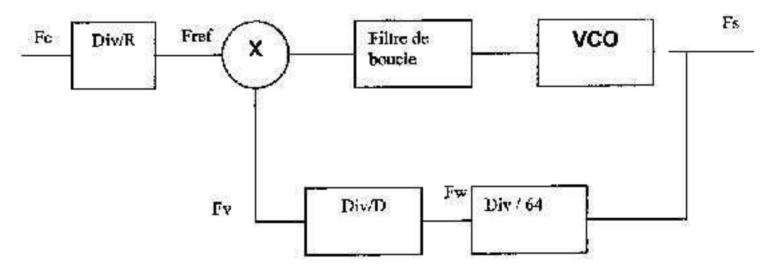
-« Up converter » : pour obtention d'une fréquence haute à la sortie du mélangeur

-Les deux filtres sont des filtres passe-bande.

Les amplis n'interviennent pas dans le raisonnement.

Cocher la case correspondant à une phrase correcte.

d a) Pour transposer le signal à 890MHz, on règle l'oscillateur local à $f_0 = 770$ MHz


b) Pour cette opération, on peut aussi régler l'oscillateur local à 1030MHz

c) le filtre F1 est centré sur 890MHz et a une largeur de 200kHz

d) Le filtre à F2 ne sen à rien ;

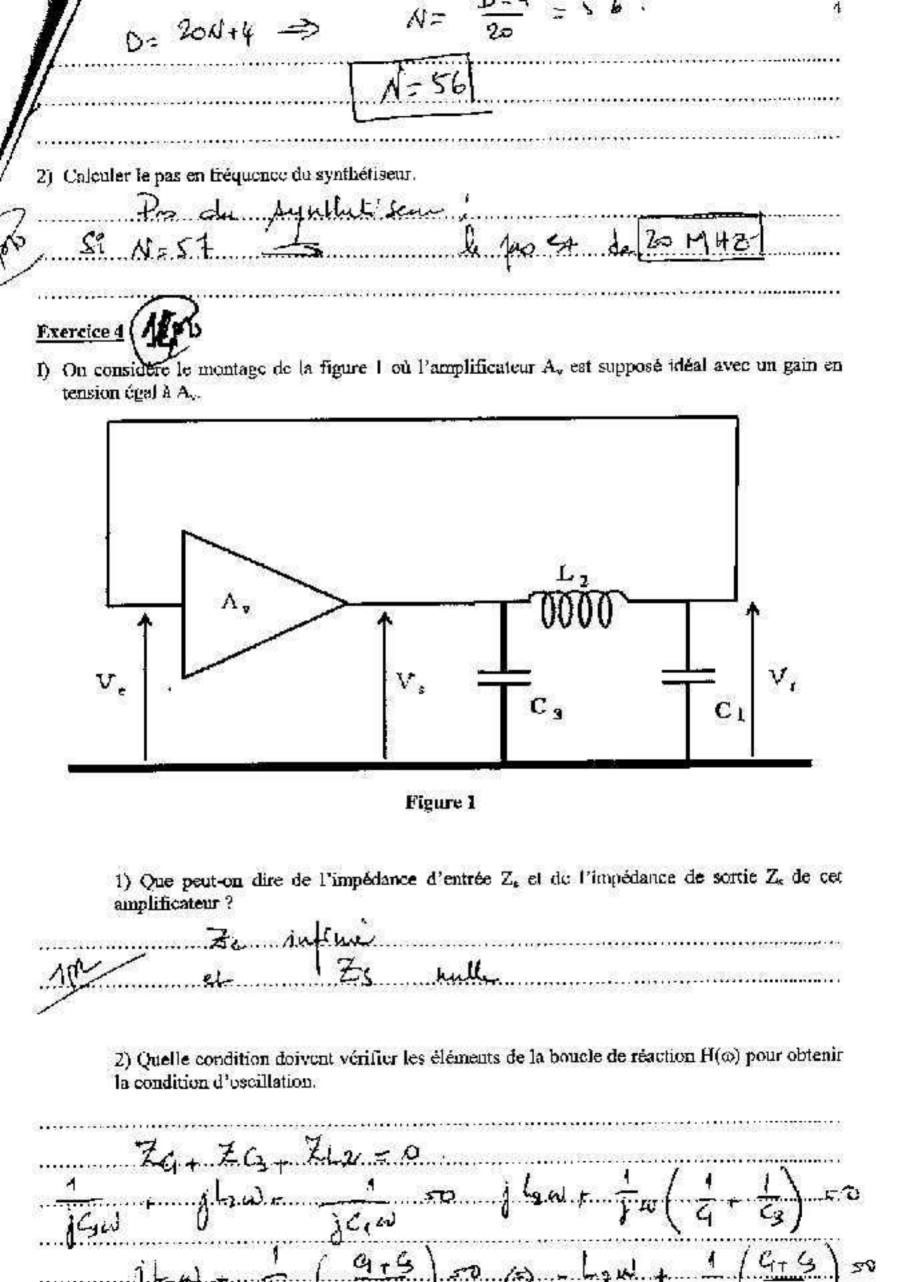
sert à fellier les harmonlères per l'aufli.

On considére un circuit synthétiseur de fréquence (circuit MOTOROLA) représenté sur la figure suivante, utilisant une boucle à verrouillage de phase.

Les blocs notés Div/R, Div/D et Div/64 représentent des cincuits diviseurs de fréquence respectivement par R, D, 64.

D = NP+A où N,P et A sont des entiers.

On donne:

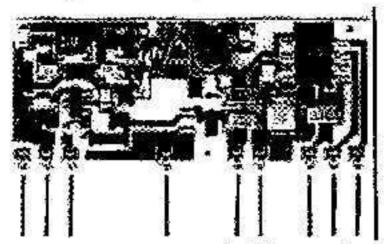

Exercice 3

R = 259

P = 20

Fe = 4,046875 MHz

A=4



	achant que R ₁ - 1k	Ω, montrer qu	e la fonction	de transfert H	(ω) reste pratique.	ment
ות לין "	nchangée.				.=	= 9,95
	GW3	21 72,	. 34 . ca3	220 103	<u> </u>	# 10
(ZRI)	in déduire la valeur de				> podial	unes de f
بىر د 🛪	- R2 = -100		2= 100	4 = [60	k 50	
d	n place en série avec l'oscillation en fonction btient t-on ?	l'inductance I in de L2 et C. (.2 un condens On admettra qu	ntent C. Exprime ie C< <ci c3.<="" et="" td=""><td>er la nouvelle fréqu Quel type d'oscill</td><td>ience atcur</td></ci>	er la nouvelle fréqu Quel type d'oscill	ience atcur
	- glavi	1 34W	jew	50 B) jh	w + - 10 0	73 2
γ 6- 1	ران کی در کا En fait la capacité C es fonction de la tension s	t la conscité du	1 Tage =>> namique d'une stème : Ua. Or	diode varicap of releve la variati	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tie en unte:
	a. Pour Ua = 0 y	on obtient C=	15 pF			
	b. Pour Ua = 5v	- 11 Table - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		2):	96 88	asp a
	Déterminer le rapport est linéaire.	ΔC/ΔU , On ac	mettra pour si	mplifier, que dat _	13 c e rte zonic la val	iation
) <u>A</u>	C 15-35 4 0-5	= [-12	5 po F/V	<u></u>	****	
ELUXET	Exprimer l'expression	ıdu facteur K	veo qui défini	la fonction de	transfert de l'osci	llatour
7-	commandé en tension	ainsi réalisé, K	W-M/40.	m [memma on .	-j	

8- Calculer l'excursion en fréquence de l'oscillateur lorsque Un varie de 0 à 5 v.

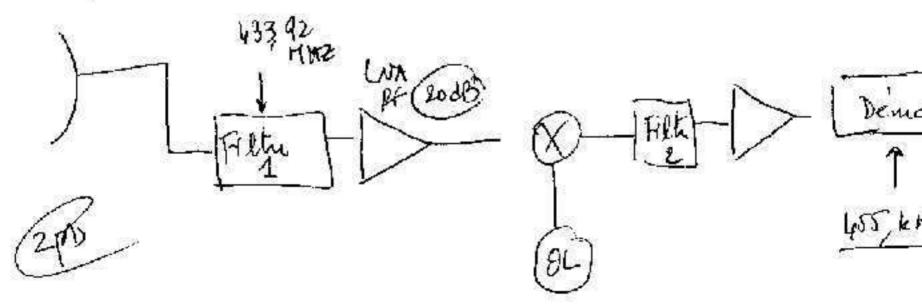
Exercice 5 (FOR)

Un récepteur de type « module Aurel » est construit pour recevoir des signaux de télécommande émis sur la fréquence standard de f = 433,92 MHz. Le signal à recevoir occupe une bande de B = 10 kHz.

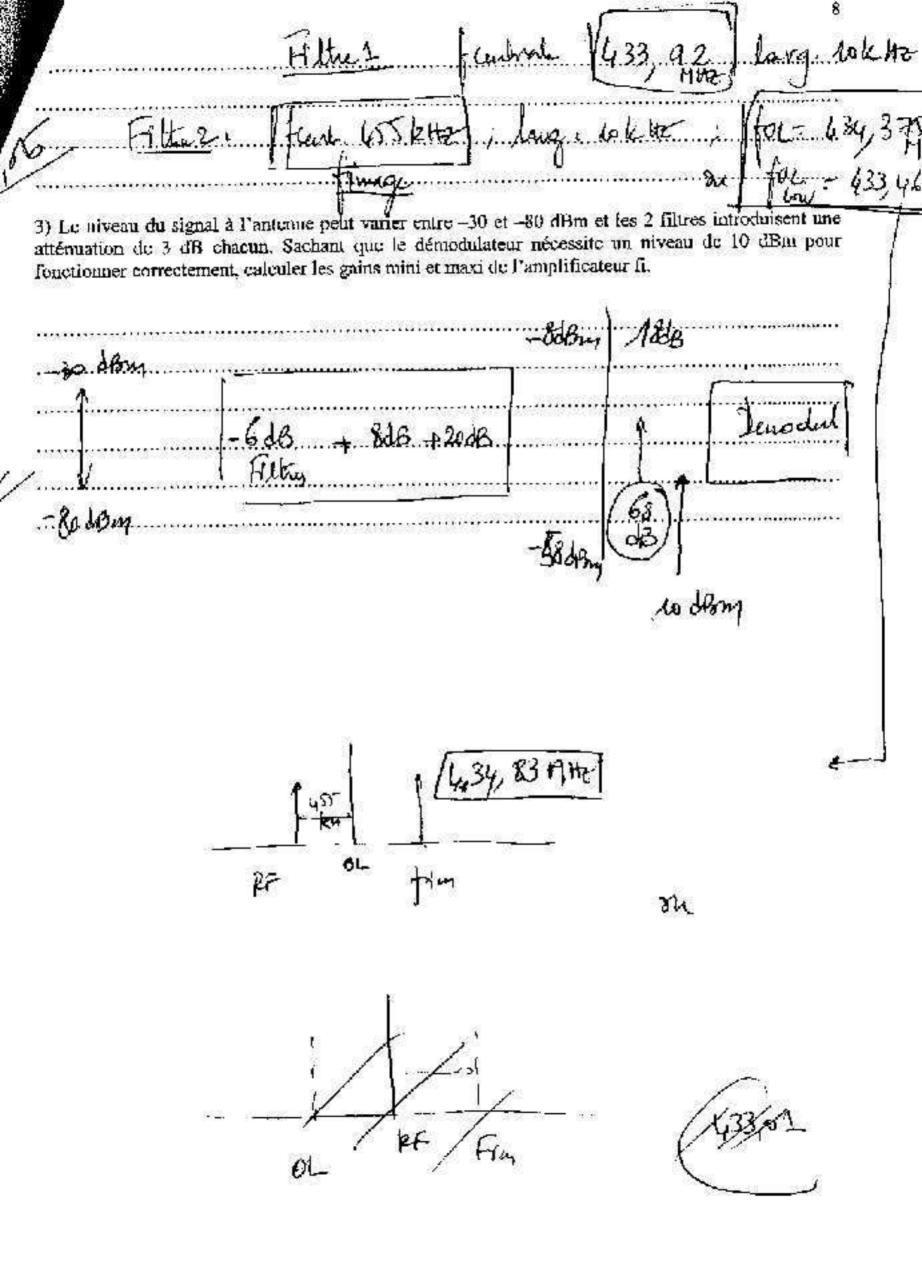
Le récepteur à changement de fréquence est constitué des éléments suivants :

un liltre d'entrée fixe

un mélangeur de gain de conversion 8 dB


un oscillateur local fo placé sous la fréquence à recevoir

un filtre de fréquence intermédiaire à fi - 455 kHz


un démodulateur AM

un ampli radiofréquence (gain 20 dB) et un ampli fi

1) Dessiner le schéma fonctionnel du récepteur de l'antenne à la sortie du démodulateur.

2) Définir les caractéristiques des doux filtres (fréquence centrale, largeur), de l'oscillateur local, et

