Modélisation des réseaux (tuttelnet)

Octobre 2007
Tous documents autorisés.
durée 2 heures

AVERTISSEMENT – Il sera tenu grand compte du soin apporté dans la rédaction des solutions. Pour chaque réponse, indiquer le numéro de la question traitée.

1 Exercice

 $\mathbf{Q} \ \mathbf{1.1} - (\text{voir dessin})$

Q 1.2 – Au bout d'un temps tres long, Pierre soit a gagné 8 euros, soit a perdu 2 euros.

Q 1.3 – La variable aléatoire G qui prend l'une des deux valeurs 8 ou -2 avec les probabilités inconnues α et $(1 - \alpha)$. Le jeu est équilibré ssi p = q = 1/2.

On a alors E(G) = 0 soit $8\alpha - 2(1 - \alpha) = 0$, ce qui donne $\alpha = 1/5$

2 Exercice

Un poste de secours en montagne dispose d'un service d'urgence tenu par un seul secouriste. Les accidents arrivent selon un processus de Poisson. Il y a en moyenne 16 accidents sur une durée de 8 heures. Les durées des soins sont indépendantes en suivant une loi exponentielle de moyenne égale à 15 minutes pour chaque accidenté. Les accidentés sont examinés au poste de secours suivant l'ordre d'arrivée et il n'y a pas de limitation de place dans le service d'urgence. Ils sont ensuite orientés dans les services hospitaliers de la région en fonction de la gravité de leurs blessures.

Q 2.1 – On a $\lambda=2$ clients/H et $\mu=4$ clients/H d'ou $a:=\lambda/\mu=1/2$. La distribution stationnaire existe car a<1.

La probabilité qu'il y ait n accidentés dans le système (file + service) à un instant donné en régime stationnaire vaut

$$\pi_n = a^n (1 - a) = \frac{1}{2^{n+1}}.$$

 \mathbf{Q} 2.2 – Déterminer les paramètres suivants :

- le nombre moyen d'accidentés dans le système $\mathrm{E}(L)=\frac{a}{1-a}=1$ (client).
- le temps moyen de présence dans le système $E(T)=\frac{1}{\lambda}E(L)=\frac{1}{2}(\text{heure}).$
- le temps moyen d'attente $E(T_q) = E(T) E(T_S) = E(T) \frac{1}{\mu} = \frac{1}{4}$ (heure).
- le nombre moyen d'accidentés en attente $\mathrm{E}(L_q)=\lambda\mathrm{E}(T_q)=\frac{1}{2}(\mathrm{client}).$

Q 2.3 – On souhaite que le nombre moyen d'accidentés en attente dans la salle d'attente soit inférieure ou égale à 1/4. A partir de quelle durée moyenne d'examen cette condition est—elle vérifiée?

On pose $E(L_q) \le 1/4$. Les calculs donnent $4a^2 + a - 1 \le 0$, ce qui donne $a_1 \le a \le a_2$ avec $a_2 = \frac{-1 + \sqrt{17}}{8} = 0.39$. Finalement $E(T_S) \le 0.195$ heure = 11.71 minutes.

3 Exercice

On considère une file M/M/1/4 dont le taux d'arrivée des clients est λ . L'unique serveur a la capacité de traiter μ clients par unité de temps.

Q 3.1 – Le pourcentage de clients rejetés est π_4 . Le calcul de la distribution stationnaire donne

$$\pi_k = \frac{a^k}{1 + a + a^2 + a^3 + a^4}$$
 avec $0 \le k \le 4$.

On considère maintenant une file M/M/2/4 dont le taux d'arrivée des clients est λ . Chacun des deux serveurs a la capacité de traiter $\frac{\mu}{2}$ clients par unité de temps.

 \mathbf{Q} 3.2 – Le pourcentage de clients rejetés est π_4 . Le calcul de la distribution stationnaire donne

$$\pi_k = \frac{2a^k}{1 + 2a + 2a^2 + 2a^3 + 2a^4}$$
 avec $1 \le k \le 4$.

Q 3.3 – Quelle est la solution assurant la meilleure qualité de service. On fera le calcul numérique dans le cas $a=\frac{\lambda}{u}=0,8.$

On trouve $\pi_4 = 0.1218$ dans le premier cas et $\pi_4 = 0.1431$ dans le second. La qualité de service est donc meilleure dans le premier cas mais la différence est faible. Lorsque $a \to 0$, le rapport des deux valeurs trouvées tend vers 1/2.

4 Exercice

Planification de la production : on travaille en flux tendu les deux premiers mois (2 unités produites par mois) et on produit 4 unités au mois de Juillet et aucune en Aout. Le cout total est alors 99 unités de compte.